Line data Source code
1 : # SPDX-FileCopyrightText: 2025 Pairinteraction Developers
2 : # SPDX-License-Identifier: LGPL-3.0-or-later
3 :
4 : """Test atom-ion interaction."""
5 :
6 1 : import numpy as np
7 1 : import pairinteraction.complex as pi
8 1 : import pytest
9 :
10 :
11 1 : def test_ion_z() -> None:
12 : """Test the calculation of energy shifts in the field on an ion positioned along z."""
13 : # Create a basis
14 1 : ket = pi.KetAtom("Rb", n=60, l=0, j=0.5, m=0.5)
15 1 : basis = pi.BasisAtom("Rb", n=(ket.n - 2, ket.n + 2), l=(0, ket.l + 2), m=(ket.m, ket.m))
16 :
17 : # Create systems for different distances to the ion
18 1 : distance = 3
19 1 : system_z = (
20 : pi.SystemAtom(basis)
21 : .set_ion_interaction_order(3)
22 : .set_ion_charge(1, unit="e")
23 : .set_ion_distance_vector([0, 0, distance], unit="um")
24 : )
25 :
26 : # Diagonalize the system
27 1 : system_z = system_z.diagonalize(diagonalizer="eigen", sort_by_energy=True)
28 :
29 : # Ensure that values are correct for the system where the ion is closest to the atom
30 1 : eigenenergies = system_z.get_eigenenergies(unit="GHz")
31 1 : overlaps = system_z.basis.get_overlaps(ket)
32 1 : idx = np.argmax(overlaps)
33 1 : assert pytest.approx(overlaps[idx], rel=1e-6) == 0.8841772505614235 # NOSONAR
34 1 : assert pytest.approx(eigenenergies[idx] - ket.get_energy(unit="GHz"), rel=1e-12) == -0.31551208172459155 # NOSONAR
35 :
36 :
37 1 : def test_ion_x() -> None:
38 : """Test the calculation of energy shifts in the field on an ion positioned along x."""
39 : # Create a basis
40 1 : ket = pi.KetAtom("Rb", n=60, l=0, j=0.5, m=0.5)
41 1 : basis = pi.BasisAtom("Rb", n=(ket.n - 2, ket.n + 2), l=(0, ket.l + 2))
42 :
43 : # Create systems for different distances to the ion
44 1 : distance = 3
45 1 : system_x = (
46 : pi.SystemAtom(basis)
47 : .set_ion_interaction_order(3)
48 : .set_ion_charge(1, unit="e")
49 : .set_ion_distance_vector([distance, 0, 0], unit="um")
50 : )
51 :
52 : # Diagonalize the system
53 1 : system_x = system_x.diagonalize(diagonalizer="eigen", sort_by_energy=True)
54 :
55 : # Ensure that values are correct for the system where the ion is closest to the atom
56 1 : eigenenergies = system_x.get_eigenenergies(unit="GHz")
57 1 : overlaps = system_x.basis.get_overlaps(ket)
58 1 : idx = np.argmax(overlaps)
59 : # Note that we must use a large relative tolerance for the overlaps because the calculated value
60 : # is very sensitive on the actual method that is used by eigen to diagonalize the system (whether eigen
61 : # is using its own implementation, mkl on a Intel CPU, mkl on a AMD CPU, or lapack). This is because of
62 : # eigenstates belonging to different degenerate Zeeman sublevels.
63 1 : assert pytest.approx(overlaps[idx], rel=0.2) == 0.8841772505614235 # NOSONAR
64 1 : assert pytest.approx(eigenenergies[idx] - ket.get_energy(unit="GHz"), rel=1e-12) == -0.31551208172459155 # NOSONAR
65 :
66 :
67 1 : def test_ion_angle_dependence() -> None:
68 : """Test the calculation of energy shifts in the field on an ion for different angles."""
69 : # Create a basis
70 1 : basis = pi.BasisAtom("Rb", n=(58, 62), l=(0, 2))
71 :
72 : # Create systems for different distances to the ion
73 1 : distances = np.linspace(3, 10, 5)
74 1 : systems_x = [
75 : pi.SystemAtom(basis)
76 : .set_ion_interaction_order(3)
77 : .set_ion_charge(1, unit="e")
78 : .set_ion_distance_vector([d, 0, 0], unit="um")
79 : for d in distances
80 : ]
81 1 : systems_y = [
82 : pi.SystemAtom(basis)
83 : .set_ion_interaction_order(3)
84 : .set_ion_charge(1, unit="e")
85 : .set_ion_distance_vector([0, d, 0], unit="um")
86 : for d in distances
87 : ]
88 1 : systems_z = [
89 : pi.SystemAtom(basis)
90 : .set_ion_interaction_order(3)
91 : .set_ion_charge(1, unit="e")
92 : .set_ion_distance_vector([0, 0, d], unit="um")
93 : for d in distances
94 : ]
95 :
96 : # Diagonalize the systems in parallel
97 1 : pi.diagonalize(systems_x + systems_y + systems_z, diagonalizer="eigen", sort_by_energy=True)
98 :
99 : # Ensure that all eigenenergies are the same
100 1 : for system_x, system_y, system_z in zip(systems_x, systems_y, systems_z):
101 1 : np.testing.assert_allclose(system_x.get_eigenenergies(unit="GHz"), system_y.get_eigenenergies(unit="GHz"))
102 1 : np.testing.assert_allclose(system_x.get_eigenenergies(unit="GHz"), system_z.get_eigenenergies(unit="GHz"))
|