Line data Source code
1 : # SPDX-FileCopyrightText: 2024 Pairinteraction Developers 2 : # SPDX-License-Identifier: LGPL-3.0-or-later 3 : 4 : """Test the mapping between kets and states.""" 5 : 6 1 : import numpy as np 7 1 : from scipy.optimize import linear_sum_assignment 8 : 9 1 : import pairinteraction.real as pi 10 : 11 : 12 1 : def test_mapping() -> None: 13 : """Test generation of a mapping.""" 14 : # Get the eigenbasis of the Hamiltonian describing an atom in an electric field 15 1 : basis = pi.BasisAtom("Rb", n=(58, 62), l=(0, 2)) 16 1 : system = pi.SystemAtom(basis).set_electric_field([0, 0, 2.5], unit="V/cm") 17 1 : system.diagonalize(diagonalizer="eigen", sort_by_energy=True) 18 1 : eigenbasis = system.get_eigenbasis() 19 : 20 1 : assert eigenbasis.number_of_states == eigenbasis.number_of_kets 21 : 22 : # Obtain the mapping 23 1 : state_indices = [eigenbasis.get_corresponding_state_index(ket) for ket in eigenbasis.kets] 24 : 25 : # Calculate the mapping from the coefficient matrix using scipy 26 1 : coefficient_matrix = np.square(np.abs(eigenbasis.get_coefficients().todense())) 27 1 : rows, cols = linear_sum_assignment(-coefficient_matrix) 28 : 29 1 : sorter = np.argsort(rows) 30 1 : rows = rows[sorter] 31 1 : cols = cols[sorter] 32 : 33 : # Because we have chosen the electric field to be weak enough to avoid strong mixing of states, 34 : # the mapping obtained by pairinteraction's heuristic should be the same as the optimal mapping 35 : # obtained by scipy's linear_sum_assignment 36 1 : np.testing.assert_array_equal(rows, np.arange(eigenbasis.number_of_kets)) 37 1 : np.testing.assert_array_equal(cols, state_indices) # TODO