RydbergStateMQDT
Class Methods
|
Initialize the Rydberg state. |
|
|
|
Create a copy of the Rydberg state. |
|
Create the element for the Rydberg state. |
|
Create the grid object for the integration of the radial Schrödinger equation. |
|
Create the model for the Rydberg state. |
|
|
|
|
|
Label representing the ket. |
Calculate the effective quantum number n* for the Rydberg state. |
|
Check that the quantum numbers are valid. |
Class Attributes and Properties
The element of the Rydberg state. |
|
The grid object for the integration of the radial Schrödinger equation. |
|
Return the effective quantum number nu = n*. |
|
The list of w values for the wavefunction. |
|
The list of z values for the grid. |
|
- class ryd_numerov.RydbergStateMQDT(species, *, nu=None, n=None, l=None, energy_au=None)[source]
Initialize the Rydberg state.
- Parameters:
species (
str
) – Atomic species.nu (
Optional
[float
]) – Effective principal quantum number of the rydberg electron, which is used to calculate the energy of the state.n (
Optional
[int
]) – Principal quantum number of the rydberg electron.l (
Optional
[int
]) – Orbital angular momentum quantum number of the rydberg electron.energy_au (
Optional
[float
]) – The energy of the Rydberg state in atomic units (“hartree”). Either nu or energy_au must be provided.
-
species:
str
-
n:
Optional
[int
]
-
l:
int
- get_label(fmt)[source]
Label representing the ket.
- Parameters:
fmt (
Literal
['raw'
,'ket'
,'bra'
]) – The format of the label, i.e. whether to return the raw label, or the label in ket or bra notation.- Return type:
str
- Returns:
The label of the ket in the given format.
- property nu: float
Return the effective quantum number nu = n*.
- calc_radial_matrix_element(other, k_radial, unit=None)
- Return type:
Union
[PlainQuantity
[float
],float
]- Parameters:
other (Self)
k_radial (int)
unit (str | None)
- create_element(*, use_nist_data=True)
Create the element for the Rydberg state.
- Return type:
None
- Parameters:
use_nist_data (bool)
- create_grid(x_min=None, x_max=None, dz=0.01)
Create the grid object for the integration of the radial Schrödinger equation.
- Parameters:
x_min (
Optional
[float
]) – The minimum value of the radial coordinate in dimensionless units (x = r/a_0). Default: Automatically calculate sensible value.x_max (
Optional
[float
]) – The maximum value of the radial coordinate in dimensionless units (x = r/a_0). Default: Automatically calculate sensible value.dz (
float
) – The step size of the integration (z = r/a_0). Default: 1e-2.
- Return type:
None
- create_model(potential_type=None)
Create the model for the Rydberg state.
- Parameters:
potential_type (
Optional
[Literal
['coulomb'
,'model_potential_marinescu_1993'
,'model_potential_fei_2009'
]]) – Which potential to use for the model.- Return type:
None
- create_wavefunction(method='numerov', sign_convention=None, *, run_backward=True, w0=1e-10, _use_njit=True)
- Return type:
None
- Parameters:
method (Literal['numerov', 'whittaker'])
sign_convention (Literal[None, 'positive_at_outer_bound', 'n_l_1'])
run_backward (bool)
w0 (float)
_use_njit (bool)
- property element: BaseElement
The element of the Rydberg state.
- get_n_star()
Calculate the effective quantum number n* for the Rydberg state.
We define n* as :rtype:
float
\[n^* = \sqrt{-\frac{1}{2} \frac{\mu}{E} }\]where mu = R_M/R_infty is the reduced mass and E the energy of the state.
- Return type:
float
- property w_list: ndarray[tuple[int, ...], dtype[Any]]
The list of w values for the wavefunction.
- property wavefunction: Wavefunction
- property z_list: ndarray[tuple[int, ...], dtype[Any]]
The list of z values for the grid.