calc_angular_matrix_element
- ryd_numerov.angular.calc_angular_matrix_element(s1, l1, j1, m1, s2, l2, j2, m2, operator, kappa, q)[source]
Calculate the angular matrix element $bra{state_2} hat{O}_{kq} ket{state_1}$.
For the states $bra{state_2} = bra{s2,l2,j2,m2}$ and $ket{state_1} = ket{s1,l1,j1,m1}$, the angular matrix elements of the operator \(\hat{O}_{kq}\) is given by
\[\bra{state_2} \hat{O}_{kq} \ket{state_1} = \bra{s2,l2,j2,m2} \hat{O}_{kq} \ket{s1,l1,j1,m1} = \langle j1, m1, k, q | j2, m2 \rangle \langle j2 || \hat{O}_{k0} || j1 \rangle / \sqrt{2 * j2 + 1} = (-1)^{j1 - \kappa + m2} wigner_3j(j1, kappa, j2, m1, q, -m2) \langle j2 || \hat{O}_{k0} || j1 \rangle\]where we first used the Wigner-Eckhart theorem and then the Wigner 3-j symbol to express the Clebsch-Gordan coefficient.
Note we changed the formulas to match the pairinteraction paper convention: https://doi.org/10.1088/1361-6455/aa743a
- Parameters:
s1 (
float
) – The spin quantum number of the initial state.l1 (
int
) – The orbital quantum number of the initial state.j1 (
float
) – The total angular momentum quantum number of the initial state.m1 (
float
) – The magnetic quantum number of the initial state.s2 (
float
) – The spin quantum number of the final state.l2 (
int
) – The orbital quantum number of the final state.j2 (
float
) – The total angular momentum quantum number of the final state.m2 (
float
) – The magnetic quantum number of the final state.operator (
Literal
['MAGNETIC'
,'ELECTRIC'
,'SPHERICAL'
,'MAGNETIC_S'
,'MAGNETIC_L'
]) – The operator type \(\hat{O}_{kq}\) for which to calculate the matrix element. Can be one of “MAGNETIC”, “ELECTRIC”, “SPHERICAL”.kappa (
int
) – The quantum number $kappa$ of the angular momentum operator.q (
int
) – The quantum number $q$ of the angular momentum operator.
- Return type:
float
- Returns:
The angular matrix element $bra{state_2} hat{O}_{kq} ket{state_1}$.