run_numerov_integration

ryd_numerov.radial.run_numerov_integration(x_start, x_stop, dx, y0, y1, g_list, x_min, verbose=False)[source]

Run the Numerov integration algorithm.

This means, run the Numerov method, which is defined for

\[\frac{d^2}{dx^2} y(x) = - g(x) y(x)\]

as

\[y_{n+1} (1 + \frac{h^2}{12} g_{n+1}) = 2 y_n (1 - \frac{5 h^2}{12} g_n) - y_{n-1} (1 + \frac{h^2}{12} g_{n-1})\]
Parameters:
  • x_start (float) – The initial value of the x-coordinate.

  • x_stop (float) – The final value of the x-coordinate.

  • dx (float) – The step size of the integration (can be negative).

  • y0 (float) – The initial value of the function y(x) at the first (or last if run_backward) x-value.

  • y1 (float) – The initial value of the function y(x) at the second (or second last if run_backward) x-value.

  • g_list (Union[Sequence[float], ndarray[tuple[int, ...], dtype[Any]]]) – A list of the values of the function g(x) at each x-value.

  • x_min (float) – The minimum value of the x-coordinate, until which the integration should be run. Once the x-value reaches x_min, we check if the function y(x) is zero and stop the integration.

  • verbose (bool) – If True, print additional information.

Returns:

A list of the values of the function y(x) at each x-value

Return type:

y_list