Source code for ryd_numerov.radial.wavefunction

import logging
from typing import TYPE_CHECKING, Optional

import numpy as np

from ryd_numerov.radial.numerov import _run_numerov_integration_python, run_numerov_integration

if TYPE_CHECKING:
    from ryd_numerov.model import ModelPotential, QuantumDefect
    from ryd_numerov.radial.grid import Grid
    from ryd_numerov.units import NDArray

logger = logging.getLogger(__name__)


[docs] class Wavefunction: r"""An object containing all the relevant information about the radial wavefunction. Attributes: w_list: The dimensionless and scaled wavefunction w(z) = z^{-1/2} \tilde{u}(x=z^2) = (r/a_0)^{-1/4} \\sqrt(a_0) r R(r) evaluated at the z_list values. u_list: The corresponding dimensionless wavefunction \tilde{u}(x) = sqrt(a_0) r R(r). r_list: The corresponding dimensionless radial wavefunction \tilde{R}(r) = a_0^{-3/2} R(r). """ def __init__( self, grid: "Grid", model_potential: "ModelPotential", quantum_defect: "QuantumDefect", ) -> None: """Create a Wavefunction object. Args: grid: The grid object. model_potential: The model potential object. quantum_defect: The quantum defect object. """ self.grid = grid self.model_potential = model_potential self.quantum_defect = quantum_defect self._w_list: Optional[NDArray] = None @property def w_list(self) -> "NDArray": r"""The dimensionless scaled wavefunction w(z) = z^{-1/2} \tilde{u}(x=z^2) = (r/a_0)^{-1/4} sqrt(a_0) r R(r).""" if self._w_list is None: return self.integrate() return self._w_list @property def u_list(self) -> "NDArray": r"""The dimensionless wavefunction \tilde{u}(x) = sqrt(a_0) r R(r).""" return np.sqrt(self.grid.z_list) * self.w_list @property def r_list(self) -> "NDArray": r"""The radial wavefunction R(r) in atomic units.""" return self.u_list / self.grid.x_list
[docs] def integrate(self, run_backward: bool = True, w0: float = 1e-10, _use_njit: bool = True) -> "NDArray": r"""Run the Numerov integration of the radial Schrödinger equation. The resulting radial wavefunctions are then stored as attributes, where - w_list is the dimensionless and scaled wavefunction w(z) - u_list is the dimensionless wavefunction \tilde{u}(x) - r_list is the radial wavefunction R(r) in atomic units The radial wavefunction are related as follows: .. math:: \tilde{u}(x) = \sqrt(a_0) r R(r) .. math:: w(z) = z^{-1/2} \tilde{u}(x=z^2) = (r/a_0)^{-1/4} \sqrt(a_0) r R(r) where z = sqrt(r/a_0) is the dimensionless scaled coordinate. The resulting radial wavefunction is normalized such that .. math:: \int_{0}^{\infty} r^2 |R(x)|^2 dr = \int_{0}^{\infty} |\tilde{u}(x)|^2 dx = \int_{0}^{\infty} 2 z^2 |w(z)|^2 dz = 1 Args: run_backward (default: True): Wheter to integrate the radial Schrödinger equation "backward" of "forward". w0 (default: 1e-10): The initial magnitude of the radial wavefunction at the outer boundary. For forward integration we set w[0] = 0 and w[1] = w0, for backward integration we set w[-1] = 0 and w[-2] = (-1)^{(n - l - 1) % 2} * w0. _use_njit (default: True): Whether to use the fast njit version of the Numerov integration. """ if self._w_list is not None: raise ValueError("The wavefunction was already integrated, you should not integrate it again.") # Note: Inside this method we use y and x like it is used in the numerov function # and not like in the rest of this class, i.e. y = w(z) and x = z grid = self.grid glist = ( 8 * self.quantum_defect.mu * grid.z_list * grid.z_list * (self.quantum_defect.energy - self.model_potential.calc_total_effective_potential(grid.x_list)) ) if run_backward: # Note: n - l - 1 is the number of nodes of the radial wavefunction # Thus, the sign of the wavefunction at the outer boundary is (-1)^{(n - l - 1) % 2} y0, y1 = 0, (-1) ** ((self.model_potential.n - self.model_potential.l - 1) % 2) * w0 x_start, x_stop, dx = grid.z_max, grid.z_min, -grid.dz g_list_directed = glist[::-1] # We set x_min to the classical turning point # after x_min is reached in the integration, the integration stops, as soon as it crosses the x-axis again # or it reaches a local minimum (thus going away from the x-axis) x_min = self.model_potential.calc_z_turning_point("classical", dz=grid.dz) x_min = max(x_min, 5 * abs(dx), self.get_x_min()) else: # forward y0, y1 = 0, w0 x_start, x_stop, dx = grid.z_min, grid.z_max, grid.dz g_list_directed = glist x_min = np.sqrt(self.model_potential.n * (self.model_potential.n + 15)) if _use_njit: w_list_list = run_numerov_integration(x_start, x_stop, dx, y0, y1, g_list_directed, x_min) else: logger.warning("Using python implementation of Numerov integration, this is much slower!") w_list_list = _run_numerov_integration_python(x_start, x_stop, dx, y0, y1, g_list_directed, x_min) w_list = np.array(w_list_list) if run_backward: w_list = w_list[::-1] grid.set_grid_range(step_start=grid.steps - len(w_list)) else: grid.set_grid_range(step_stop=len(w_list)) # normalize the wavefunction, see docstring norm = np.sqrt(2 * np.sum(w_list * w_list * grid.z_list * grid.z_list) * grid.dz) w_list /= norm self._w_list = w_list self.sanity_check(x_stop, run_backward) return w_list
[docs] def get_x_min(self) -> float: """Implement a few special cases for the x_min point of the integration.""" species, n, l = self.model_potential.species, self.model_potential.n, self.model_potential.l if species in ["Rb", "Cs"] and n == 4 and l == 3: return 2 if species == "Sr_singlet" and n == 5 and l == 0: return 2 return 0
[docs] def sanity_check(self, z_stop: float, run_backward: bool) -> bool: # noqa: C901, PLR0915, PLR0912 """Do some sanity checks on the wavefunction. Check if the wavefuntion fulfills the following conditions: - The wavefunction is positive (or zero) at the inner boundary. - The wavefunction is close to zero at the inner boundary. - The wavefunction is close to zero at the outer boundary. - The wavefunction has exactly (n - l - 1) nodes. - The integration stopped before z_stop (for l>0) """ grid = self.grid sanity_check = True species, n, l, j = ( self.model_potential.species, self.model_potential.n, self.model_potential.l, self.model_potential.j, ) # Check the maximum of the wavefunction idmax = np.argmax(np.abs(self.w_list)) if run_backward and idmax < 0.05 * grid.steps: sanity_check = False logger.warning( "The maximum of the wavefunction is close to the inner boundary (idmax=%s) " "probably due to inner divergence of the wavefunction. " "Trying to fix this, but the result might still be incorrect or at least inprecise.", idmax, ) wmax = np.max(self.w_list[int(0.1 * grid.steps) :]) wmin = np.min(self.w_list[int(0.1 * grid.steps) :]) tol = 1e-2 * max(abs(wmax), abs(wmin)) self._w_list *= (self.w_list <= wmax + tol) * (self.w_list >= wmin - tol) norm = np.sqrt(2 * np.sum(self.w_list * self.w_list * grid.z_list * grid.z_list) * grid.dz) self._w_list /= norm # Check the wavefunction at the inner boundary if self.w_list[0] < 0: sanity_check = False logger.warning("The wavefunction is negative at the inner boundary, %s", self.w_list[0]) inner_ind = {0: 5, 1: 5}.get(l, 10) inner_weight = ( 2 * np.sum( self.w_list[:inner_ind] * self.w_list[:inner_ind] * grid.z_list[:inner_ind] * grid.z_list[:inner_ind] ) * grid.dz ) inner_weight_scaled_to_whole_grid = inner_weight * grid.steps / inner_ind tol = 1e-5 if l in [4, 5, 6]: # apparently the wavefunction converges worse for those l values # maybe this has something to do with the model potential parameters, which are only given for l <= 3 tol = 1e-4 # for low n the wavefunction also converges bad if n <= 15: tol = 2e-4 if n < 10: tol = 1e-3 if n <= 6: tol = 5e-3 # special cases of bad convergence: if species == "K" and l == 3: tol = max(tol, 5e-5) if (species, n, l, j) == ("Cs", 5, 2, 1.5): tol = max(tol, 2e-2) if inner_weight_scaled_to_whole_grid > tol: sanity_check = False logger.warning( "The wavefunction is not close to zero at the inner boundary, (inner_weight_scaled_to_whole_grid=%.2e)", inner_weight_scaled_to_whole_grid, ) # Check the wavefunction at the outer boundary outer_ind = int(0.95 * grid.steps) outer_wf = self.w_list[outer_ind:] if np.mean(outer_wf) > 1e-7: sanity_check = False logger.warning( "The wavefunction is not close to zero at the outer boundary, mean=%.2e", np.mean(outer_wf), ) outer_weight = 2 * np.sum(outer_wf * outer_wf * grid.z_list[outer_ind:] * grid.z_list[outer_ind:]) * grid.dz outer_weight_scaled_to_whole_grid = outer_weight * grid.steps / len(outer_wf) if outer_weight_scaled_to_whole_grid > 1e-10: sanity_check = False logger.warning( "The wavefunction is not close to zero at the outer boundary, (outer_weight_scaled_to_whole_grid=%.2e)", outer_weight_scaled_to_whole_grid, ) # Check the number of nodes nodes = np.sum(np.abs(np.diff(np.sign(self.w_list)))) // 2 if nodes != n - l - 1: sanity_check = False logger.warning("The wavefunction has %s nodes, but should have {n - l - 1} nodes.", nodes) # Check that numerov stopped and did not run until x_stop if l > 0: if run_backward and z_stop > grid.z_list[0] - grid.dz / 2: sanity_check = False logger.warning("The integration did not stop before z_stop, z=%s, %s", grid.z_list[0], z_stop) if not run_backward and z_stop < grid.z_list[-1] + grid.dz / 2: sanity_check = False logger.warning("The integration did not stop before z_stop, z=%s", grid.z_list[-1]) elif l == 0 and run_backward: if z_stop > 1.5 * grid.dz: sanity_check = False logger.warning("The integration for l=0 should go until z=dz, but a z_stop=%s was used.", z_stop) elif grid.z_list[0] > 2.5 * grid.dz: # z_list[0] should be dz, but if it is 2 * dz this is also fine # e.g. this might happen if the integration just stopped at the last step due to a negative y value sanity_check = False logger.warning( "The integration for l=0 did stop before the z_min boundary, z=%s, %s", grid.z_list[0], grid.dz ) if not sanity_check: logger.error( "The wavefunction (species=%s n=%d, l=%d, j=%.1f) has some issues.", self.model_potential.species, n, l, j, ) return sanity_check