{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculating dipole matrix elements" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "from rydstate.rydberg_state import RydbergStateAlkali" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numerov radial matrix element: -137.76904105892473 bohr\n", "Numerov angular matrix element: 0.23936536824085952\n", "Numerov dipole matrix element: -67.49277058938209 bohr * elementary_charge\n" ] } ], "source": [ "state_i = RydbergStateAlkali(\"Rb\", 60, 2, j=3 / 2, m=1 / 2)\n", "state_f = RydbergStateAlkali(\"Rb\", 60, 3, j=5 / 2, m=1 / 2)\n", "\n", "kappa = 1\n", "radial = state_i.radial.calc_matrix_element(state_f.radial, k_radial=1)\n", "angular = state_i.angular.calc_matrix_element(state_f.angular, \"spherical\", kappa=kappa, q=0)\n", "prefactor = np.sqrt(4 * np.pi / (2 * kappa + 1))\n", "print(f\"Numerov radial matrix element: {radial}\")\n", "print(f\"Numerov angular matrix element: {angular}\")\n", "\n", "dipole = state_i.calc_matrix_element(state_f, \"electric_dipole\", q=0)\n", "print(f\"Numerov dipole matrix element: {dipole}\")\n", "\n", "assert np.isclose(dipole.magnitude, (prefactor * radial * angular).magnitude), (\n", " f\"{dipole} != {prefactor * radial * angular}\"\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "rydstate", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.1" } }, "nbformat": 4, "nbformat_minor": 2 }