This page was generated from the Jupyter notebook
compare_model_potentials.ipynb.
Compare different effective model potentials
[1]:
import matplotlib.pyplot as plt
from ryd_numerov.rydberg import RydbergState
Check Rubidium with large n
For Rubidium and large quantum numbers n we expect the effective model potentials to be very similar.
[2]:
state = RydbergState("Rb", n=40, l=0, j=0.5)
states: dict[str, RydbergState] = {}
states["model_potential_marinescu_1993"] = RydbergState(state.species, n=state.n, l=state.l, j=state.j)
states["model_potential_marinescu_1993"].create_model(potential_type="model_potential_marinescu_1993")
states["model_potential_fei_2009"] = RydbergState(state.species, n=state.n, l=state.l, j=state.j)
states["model_potential_fei_2009"].create_model(potential_type="model_potential_fei_2009")
for label, state in states.items():
print(f"Creating wavefunction for {label}")
state.create_wavefunction()
Creating wavefunction for model_potential_marinescu_1993
Creating wavefunction for model_potential_fei_2009
[3]:
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
for ax in axs:
linestyles = ["-", "--", "-.", ":"]
for label, state in states.items():
ax.plot(state.grid.z_list, state.wavefunction.w_list, label=label, lw=2, ls=linestyles.pop(0))
ax.legend()
ax.set_xlabel("$z$")
ax.set_ylabel("$w(z)$")
axs[1].set_xlim(0, 5)
plt.show()

Big differences for Strontium with small n
[4]:
state = RydbergState("Sr88_singlet", n=8, l=0, j=0)
states: dict[str, RydbergState] = {}
states["model_potential_marinescu_1993"] = RydbergState(state.species, n=state.n, l=state.l, j=state.j)
states["model_potential_marinescu_1993"].create_model(potential_type="model_potential_marinescu_1993")
states["model_potential_fei_2009"] = RydbergState(state.species, n=state.n, l=state.l, j=state.j)
states["model_potential_fei_2009"].create_model(potential_type="model_potential_fei_2009")
for label, state in states.items():
print(f"Creating wavefunction for {label}")
state.create_wavefunction()
The wavefunction (species=Sr88_singlet n=8, l=0, j=0.0) has some issues:
The maximum of the wavefunction is close to the inner boundary (idmax=92) probably due to inner divergence of the wavefunction.
The wavefunction is negative at the inner boundary (-0.1835397054273211).
The wavefunction has 6.0 nodes, but should have 7 nodes.
Creating wavefunction for model_potential_marinescu_1993
Creating wavefunction for model_potential_fei_2009
[5]:
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
for ax in axs:
linestyles = ["-", "--", "-.", ":"]
for label, state in states.items():
ax.plot(state.grid.z_list, state.wavefunction.w_list, label=label, lw=2, ls=linestyles.pop(0))
ax.legend()
ax.set_xlabel("$z$")
ax.set_ylabel("$w(z)$")
axs[1].set_xlim(0, 5)
plt.show()
