AngularState
Class Methods
|
|
|
Calculate the expectation value of a quantum number q. |
|
Calculate the dimensionless angular matrix element. |
|
Calculate the reduced angular matrix element. |
|
Calculate the reduced overlap <self||other> (ignoring the magnetic quantum number m). |
|
Calculate the standard deviation of a quantum number q. |
|
Convert to specified coupling scheme. |
Class Attributes and Properties
Return the coupling scheme of the state. |
|
Return the norm of the state (should be 1). |
- class rydstate.angular.AngularState(coefficients, kets, *, warn_if_not_normalized=True)[source]
- Parameters:
coefficients (list[float])
kets (list[_AngularKet])
warn_if_not_normalized (bool)
- property coupling_scheme: Literal['LS', 'JJ', 'FJ']
Return the coupling scheme of the state.
- property norm: float
Return the norm of the state (should be 1).
- to(coupling_scheme)[source]
Convert to specified coupling scheme.
- Parameters:
coupling_scheme (
Literal['LS','JJ','FJ']) – The coupling scheme to convert to (e.g. “LS”, “JJ”, “FJ”).- Return type:
AngularState[Any]- Returns:
The angular state in the specified coupling scheme.
- calc_exp_qn(q)[source]
Calculate the expectation value of a quantum number q.
- Parameters:
q (
Literal['i_c','s_c','l_c','s_r','l_r','s_tot','l_tot','j_c','j_r','j_tot','f_c','f_tot']) – The quantum number to calculate the expectation value for.- Return type:
float
- calc_std_qn(q)[source]
Calculate the standard deviation of a quantum number q.
- Parameters:
q (
Literal['i_c','s_c','l_c','s_r','l_r','s_tot','l_tot','j_c','j_r','j_tot','f_c','f_tot']) – The quantum number to calculate the standard deviation for.- Return type:
float
- calc_reduced_overlap(other)[source]
Calculate the reduced overlap <self||other> (ignoring the magnetic quantum number m).
- Return type:
float- Parameters:
other (AngularState[Any] | AngularKetBase)
- calc_reduced_matrix_element(other, operator, kappa)[source]
Calculate the reduced angular matrix element.
This means, calculate the following matrix element:
\[\left\langle self || \hat{O}^{(\kappa)} || other \right\rangle\]- Return type:
float- Parameters:
self (Self)
other (AngularState[Any] | AngularKetBase)
operator (Literal['spherical', 'i_c', 's_c', 'l_c', 's_r', 'l_r', 's_tot', 'l_tot', 'j_c', 'j_r', 'j_tot', 'f_c', 'f_tot', 'identity_i_c', 'identity_s_c', 'identity_l_c', 'identity_s_r', 'identity_l_r', 'identity_s_tot', 'identity_l_tot', 'identity_j_c', 'identity_j_r', 'identity_j_tot', 'identity_f_c', 'identity_f_tot'])
kappa (int)
- calc_matrix_element(other, operator, kappa, q)[source]
Calculate the dimensionless angular matrix element.
This means, calculate the following matrix element:
\[\left\langle self | \hat{O}^{(\kappa)}_q | other \right\rangle\]- Return type:
float- Parameters:
self (Self)
other (AngularState[Any] | AngularKetBase)
operator (Literal['spherical', 'i_c', 's_c', 'l_c', 's_r', 'l_r', 's_tot', 'l_tot', 'j_c', 'j_r', 'j_tot', 'f_c', 'f_tot', 'identity_i_c', 'identity_s_c', 'identity_l_c', 'identity_s_r', 'identity_l_r', 'identity_s_tot', 'identity_l_tot', 'identity_j_c', 'identity_j_r', 'identity_j_tot', 'identity_f_c', 'identity_f_tot'])
kappa (int)
q (int)