AngularState

Class Methods

__init__(coefficients, kets, *[, ...])

calc_exp_qn(q)

Calculate the expectation value of a quantum number q.

calc_matrix_element(other, operator, kappa, q)

Calculate the dimensionless angular matrix element.

calc_reduced_matrix_element(other, operator, ...)

Calculate the reduced angular matrix element.

calc_reduced_overlap(other)

Calculate the reduced overlap <self||other> (ignoring the magnetic quantum number m).

calc_std_qn(q)

Calculate the standard deviation of a quantum number q.

to(coupling_scheme)

Convert to specified coupling scheme.

Class Attributes and Properties

coupling_scheme

Return the coupling scheme of the state.

norm

Return the norm of the state (should be 1).

class rydstate.angular.AngularState(coefficients, kets, *, warn_if_not_normalized=True)[source]
Parameters:
  • coefficients (list[float])

  • kets (list[_AngularKet])

  • warn_if_not_normalized (bool)

property coupling_scheme: Literal['LS', 'JJ', 'FJ']

Return the coupling scheme of the state.

property norm: float

Return the norm of the state (should be 1).

to(coupling_scheme)[source]

Convert to specified coupling scheme.

Parameters:

coupling_scheme (Literal['LS', 'JJ', 'FJ']) – The coupling scheme to convert to (e.g. “LS”, “JJ”, “FJ”).

Return type:

AngularState[Any]

Returns:

The angular state in the specified coupling scheme.

calc_exp_qn(q)[source]

Calculate the expectation value of a quantum number q.

Parameters:

q (Literal['i_c', 's_c', 'l_c', 's_r', 'l_r', 's_tot', 'l_tot', 'j_c', 'j_r', 'j_tot', 'f_c', 'f_tot']) – The quantum number to calculate the expectation value for.

Return type:

float

calc_std_qn(q)[source]

Calculate the standard deviation of a quantum number q.

Parameters:

q (Literal['i_c', 's_c', 'l_c', 's_r', 'l_r', 's_tot', 'l_tot', 'j_c', 'j_r', 'j_tot', 'f_c', 'f_tot']) – The quantum number to calculate the standard deviation for.

Return type:

float

calc_reduced_overlap(other)[source]

Calculate the reduced overlap <self||other> (ignoring the magnetic quantum number m).

Return type:

float

Parameters:

other (AngularState[Any] | AngularKetBase)

calc_reduced_matrix_element(other, operator, kappa)[source]

Calculate the reduced angular matrix element.

This means, calculate the following matrix element:

\[\left\langle self || \hat{O}^{(\kappa)} || other \right\rangle\]
Return type:

float

Parameters:
  • self (Self)

  • other (AngularState[Any] | AngularKetBase)

  • operator (Literal['spherical', 'i_c', 's_c', 'l_c', 's_r', 'l_r', 's_tot', 'l_tot', 'j_c', 'j_r', 'j_tot', 'f_c', 'f_tot', 'identity_i_c', 'identity_s_c', 'identity_l_c', 'identity_s_r', 'identity_l_r', 'identity_s_tot', 'identity_l_tot', 'identity_j_c', 'identity_j_r', 'identity_j_tot', 'identity_f_c', 'identity_f_tot'])

  • kappa (int)

calc_matrix_element(other, operator, kappa, q)[source]

Calculate the dimensionless angular matrix element.

This means, calculate the following matrix element:

\[\left\langle self | \hat{O}^{(\kappa)}_q | other \right\rangle\]
Return type:

float

Parameters:
  • self (Self)

  • other (AngularState[Any] | AngularKetBase)

  • operator (Literal['spherical', 'i_c', 's_c', 'l_c', 's_r', 'l_r', 's_tot', 'l_tot', 'j_c', 'j_r', 'j_tot', 'f_c', 'f_tot', 'identity_i_c', 'identity_s_c', 'identity_l_c', 'identity_s_r', 'identity_l_r', 'identity_s_tot', 'identity_l_tot', 'identity_j_c', 'identity_j_r', 'identity_j_tot', 'identity_f_c', 'identity_f_tot'])

  • kappa (int)

  • q (int)